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Introduction

Official statistics:

• Data source: traditionally probability samples in

combination with registers

• Inference: traditionally design based or model assisted

• Main reason: free from model assumptions

• Drawback: large design variances in case of small

sample sizes

• Relevance of data increases with the level of detail, its

timeliness and frequency

• Interest in reliable domain estimates

• E.g. domain totals Yj =
∑Nj

i=1 yi

• Direct estimator Ŷj =
∑n

i=1wiyiδij

with δij an indicator equal to one if i is an element of

domain j and zero other wise
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• Domains and areas are graphical or socio-demographic

breakdowns of the population
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Small Area Estimation

• Refers to model-based inference procedures that use a

statistical model to improve the effective sample size

in a particular domain with sample information of

neighboring domains

• Overview: Rao and Molina (2015)

• NSI’s:

– Reserved to apply model based methods in the

production of official statistics

– It is however a solution for

∗ small domain problems

∗ use of non-probability data sources instead of

survey data only

– Increasing interest among NSI’s, e.g. Statistics

Netherlands
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• Mainstream approaches in SAE:

– Area level model or Fay-Herriot model (Fay and

Herriot, 1979)

multilevel model for the direct estimates at the

domain level

– Unit level model or Battese-Harter-Fuller model

(Battese et al., 1988)

multilevel model for the sampling units

• Success of both models depends on the available

covariates

• Traditionally:

– Registers

– Census
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• New non-probability data sources

– Potential covariates in SAE models

– Particularly for countries without registers and cen-

suses

– Area level model most appropriate since it avoids

problems with matching fuzzy big data sources at

the micro level

• Area level model:

– Measurement error model: Ŷj = θj + ej

– Linear model for population parameter:

θj = βtxj + uj

∗ uj: random domain effect

∗ ej: sampling error

– Multi level model for direct estimator:

Ŷj = βtxj + uj + ej

– Used to construct a prediction for θj (Rao and

Molina, 2015)
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Relevant literature

Literature on the use of big data sources for estimating poverty and wealth

• Marchetti et al. (2015) uses mobility of cars tracked

with GPS as a covariate for predicting poverty in a

Fay-Herriot model

• Noor et al. (2008) uses remotely sensed night-time light

(via satellite images) as a proxy for poverty.

– Analyse correlation between house hold survey data

on income with night-time light intensity

– Propose night-light intensity as a measure for poverty.

• Engstrom et al. (2017) uses day time satellite images

to predict well-being.

– Applied deep learning to extract features related

to well-being (number of cars, building type, roof

type, etc).

– Applied machine learning methods to combine
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survey data with satellite image features

– Used this to predict well being in other areas

• Blumenstock et al. (2015) used mobile phone data to

predict poverty

– Applied machine learning methods to combine

survey data with mobile phone data

– Used this to predict well being and poverty in

other areas

• Steele et al. (2017) used mobile phone data and

satellite images to predict poverty

– Combine survey data with mobile phone data and

satellite data in a generalized linear model to

predict poverty for small spatial areas

– Comes close to SAE methodology
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• Schmid et al. (2017) uses mobile phone data for

estimating literacy

– Combine survey data with mobile phone data as

covariates in an Area level model or Fay Herriot

model
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